
Fast Correction of Multiple Soft Errors in

Highly Associative Cache with CAM-Based Tag

Hyuk-Jun Lee1, Seung-Cheol Kim1,, and Eui-Young Chung2

1 School of Computer Science and Engineering, Sogang University
#1, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea

{hyukjunl,vermouth}@sogang.ac.kr
http://ecl.sogang.ac.kr

2 School of Electrical and Electronic Engineering, Yonsei University
#134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea

eychung@yonsei.ac.kr

http://dtl.yonsei.ac.kr

Abstract. Content addressable memory (CAM) is a key component to
build the tag memory of a highly associative cache. As CMOS process
technology scales,soft error rates (SER) in CAM cells increase signifi-
cantly. Bit flipping in CAM cell leads to a false miss upon a cache access,
which could be fatal from a system point of view. Previous schemes either
focused on reducing the probability of soft errors or had an unbounded
single soft error correction time. Compared with previous schemes, our
approach completely detects and corrects multiple soft errors. The de-
tection and correction in our scheme happens as a background process,
does not interfere with concurrent cache accesses, and does not affect
the performance of time-critical cache operations. In addition, we en-
hance the cache miss holding register structure of a non-blocking cache
to avoid data corruption due to any false cache miss happening between
occurrence and correction of errors.

Keywords: CAM, cache, soft error, error correction.

1 Introduction

Cache memory is used in microprocessors to fill the performance gap between
high speed processor cores and slow external memories such as DRAM. Cache
memory consists of a tag memory and data memory. A tag memory can be
implemented with CAM or SRAM. Cache can be classified as CAM-RAM cache
or RAM-RAM cache according to the implementation method [2]. CAM-RAM
cache is adequate for the highly associative cache which provides a low miss
rate. Achieving a low miss rate is critical in modern microprocessors. As CMOS
process technology scales and low power schemes such as voltage scaling are used,
the probability of soft errors increases in densely integrated memory cells. Soft
errors in the tag portion of the cache turn into critical system problems without
error detection and correction. For instance, bit flipping in the tag memory can

T.-h. Kim et al. (Eds.): SecTech/CA/CES3 2012, CCIS 339, pp. 424–431, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://ecl.sogang.ac.kr
http://dtl.yonsei.ac.kr


Fast Correction of Multiple Soft Errors in Highly Associative Cache 425

lead to a false miss in which case accessing cache block exists in the cache but
a cache miss happens due to the bit flip in the tag. In CAM-RAM cache, a tag
memory made out of CAM cannot be read upon a cache access. When a false
miss happens, data in the missed cache block could be dirty, i.e., modified. In
case of the write-back data cache which delays updating a lower level memory
until replacement, a false miss fetches stale data from the lower level memory
and causes data corruption.

Several architectural methods were proposed to reduce false misses [1][2].
Cache scrubbing discussed in [1] was not originally targeted for the CAM-based
tag but for the SRAM-based tag. In addition, cache scrubbing does not com-
pletely prevent false misses and undetected false misses cause a fatal system
failure. In [2], Hung and et al. proposed a scheme that prevents false misses
by segmenting tags horizontally into two sub-tags and identifying the sub-tags
that could be potentially hit without soft errors as local hits. They attempted
to reduce the number of local hits by optimizing the mapping. However, the
drawback of this scheme is that the correction time is unbounded. In summary,
previous works incur performance penalty in normal cache operations and are
not able to handle multiple soft errors. The work in [3] had proposed a cell ar-
chitecture that can detect only a single bit soft error in stand-alone CAM, which
has several issues if we apply the proposed technique directly to a cache memory.
The first issue is that, as semiconductor technology scales, multi-bit soft errors
can occur in vertically and horizontally neighboring cells. The second issue is
that detection itself cannot avoid a system failure because a false miss can still
occur before the correction happens. Unless the fetch initiated by a false miss is
handled correctly, it can cause data corruption. For this reason, correction must
be completed before the cache miss handling is completed.

To resolve these issues, we propose a circuit and architecture technique for
the fast detection and correction of multiple soft errors in the CAM-RAM cache.
This technique performs a background correction process which does not inter-
fere with on-going cache operation. We enhance the miss status holding register
structure of a non-blocking cache to handle the missed block fetched by a false
miss. In addition, we optimize the detection and correction circuitry to make
overall correction time less than the cache miss penalty, which is the requirement
for correct operations. Our scheme works for both blocking and non-blocking
cache. For simplicity, we present works only for a non-blocking cache.

2 Proposed Architecture

2.1 Overall Architecture

The main idea of the proposed scheme is that error detection and correction
is performed as a background process immediately after an error occurs. This
process does not interfere with a concurrent cache access unless the concurrent
access attempts to access a corrupted cache entry. To handle the case where a
corrupted cache entry is accessed before the error is fixed by the background
process, we modify the miss status holding register (MSHR) logic [4].



426 H.-J. Lee et al.

Data Memory

G
en

er
at

io
n 

B
lo

ck

Err_Addr

HIT/MISS and ECC LOGIC

Miss Status
Holding Registers

Read/Write Address

Miss

E
rr Hit

Error Corrected Tag & Data

Tag Memory

E
rr

or
 S

ig
na

l/A
dd

r

Fig. 1. Proposed Cache Architecture

As shown in Fig. 1, our architecture consists of two parts: conventional cache
and newly added blocks. The block inside the dotted line is a new addition
and blocks in gray color are modified ones. The conventional cache consists of
a tag and data memory and hit/miss and ECC circuits, and MSHR. In our
proposed architecture, the conventional cache part has been modified. First, the
tag memory is modified to generate an error signal per tag word which is labeled
as Err in Fig. 1. The width of Err is same as the number of tag words in the
tag memory. When the cell of a tag word is corrupted, the error signal, Err, is
asserted to the error signal/address generation block. Based on this Err signal,
the signal/address generation block asserts a global error signal and generates the
address of a corrupted tag word to the MSHR block. If the address of a corrupted
tag is found in MSHR that stores the addresses of any on-going cache misses,
it indicates that a false miss happened earlier. The MSHR block is enhanced in
order to cancel a miss block fetch in case of a false miss.

2.2 Detecting and Correcting Multiple Soft Errors in a Single
Interleaved Tag Word

To detect and correct multiple soft errors in a single tag word, a tag memory
has been modified. The new tag architecture is shown in Fig. 2(a). In this archi-
tecture, two tags are interleaved to form an interleaved tag. Cnm stands for the
mth cell of nth tag. Shaded cells belong to the tag word 0 whereas non-shaded
cells belong to the tag word 1. P0 and P1 are parity bits for tag word 0 and
1 respectively. Lnm is a parity computing logic for Cnm. The parity computing
logics for a tag word are connected to form a chain and drives an error detection
NAND gate. The parity logic is implemented with small NMOS transistors to
reduce an area penalty. To compensate for the slow speed of NMOS pass gate
logic, a skewed NAND gate is used to quickly detect an error transition, e.g.
the input of an NAND gate changing from 1 to 0. A key challenge in design is



Fast Correction of Multiple Soft Errors in Highly Associative Cache 427

(a)

C00 C10 C01 C11 C02 C12 P0 P1

L03L02L01L00

L10 L11 L12 L13

A XOR BitA

A’

Bit Bit’

ERR[0]

Skewed NAND gate
A XNOR Bit

Nw

Nw

PwPw

LOG2(N/4)

ERR[0]=0

ERR[1]=0

ERR[2]=0

ERR[3]=1

ERR[4]=1

ERR[5]=0

ERR[N/2−2]=0

ERR[N/2−1]=0

"1"
Precoder

GERR[N/4−1]’=1

GERR[2]’=0

GERR[1]’=1

GERR[0]’=1

O
R

A
d
d
r
e
s
s
 
E
n
c
o
d
e
r

O
R

O
R

O
R

A
N
D

A
N
D

A
N
D

A
N
D

(b)

Fig. 2. (a) Cell Architecture for multi-bit correction (MBC): Interleaving two tag words
to detect and correct double bit errors. (b) Error address encoder which consisting of
a pre-coder and an address encoder.

to optimize both speed and area by sizing these transistors while maintaining
good noise margin. Thus extensive simulations are done and the results will be
discussed in the simulation section.

Since one interleaved tag represents two different tags, soft errors in two con-
tiguous cells of the interleaved tag, e.g. C01 and C11, turn out to be two single-bit
soft errors for two different tags. Two parity bits for an interleaved tag should
be sufficient to detect two contiguous soft errors where each parity bit covers
one of two tags respectively. This scheme can be readily extended to detect N
soft errors by interleaving N tag words. A key point is that the number of parity
bits required per tag is only one for detecting N soft errors. Another important
benefit can be found in the complexity of ECC. In this scheme, we only need to
have an ECC that can correct a single bit error per tag. A potential drawback
of this scheme is to make the width of interleaved tag two times larger, which
may increase an interconnect length. However, this does not become an issue
because CAM itself has been partitioned horizontally and vertically to improve
its timing.

2.3 Detecting and Correcting Multiple Soft Errors in Adjacent Tag
Words

To detect and correct multiple errors in vertically adjacent tag words, the address
of erred words should be determined. This is done by the error address generation
block, shown in Fig. 1. This block contains an error address encoder.

Error Address Encoder. When an alpha particle hit corrupts multiple adja-
cent tag words, a priority encoder should be used to find the address location
of the errors. Implementation of a priority encoder is costly compared to an ad-
dress encoder. To take advantage of the fact that only adjacent tag words can



428 H.-J. Lee et al.

Total Error Correction Time

WR
MRA

RD

WR
MRA

RD

WR
MRA

RD

PAR ENC RD WR
MRA

PROP

PROP

PROP

PROP

Tag Word (5)

Tag Word (2)

Tag Word (3)

Tag Word (4)

Fig. 3. Pipeline diagram for the detection and correction for soft errors in Fig. 2(b)

Table 1. Definition for abbreviated words in Fig 3

Pipeline Stage Delay Component

PAR Parity chain

ENC Error address encoder

RD Reading tag CAM and error computation

WR Writing tag CAM

MRA Miss Status Holding Register access

PROP Parity chain and error address encoder

be corrupted simultaneously, we propose a scheme that only requires an address
encoder.

In our scheme, the error address encoder block consists of a pre-coder and an
address encoder as shown in Fig 2(b). The pre-coder, shown inside the dotted box
of Fig. 2(b), has two functions. The first is to OR several adjacent error signals
using NOR gates. This is done to reduce the complexity of an address encoder.
In Fig. 2(b), error signals from two adjacent tag words are ORed together by the
leftmost NOR gates. So we only need an N

2 -input address encoder instead of an
N -input address encoder. The side-effect of this, if only one of two adjacent tag
words is corrupted, we need to access both to determine which one is corrupted.
The second function of a pre-coder is to give a tag with a higher address more
priority so that it can be detected first. This second function is achieved using
2-input NAND gates. This pre-coding circuit makes only one word corruption
appear at a time and thus an address encoder is sufficient to detect the address
of a corrupted word. In the example shown in Fig. 2(b), ERR[3] and ERR[4]
are one, which means that both tag word 3 and 4 are corrupted. Due to the
gating logic, however, only G ERR[2]′ is de-asserted, which indicates that the
tag group containing tag word 4 and 5 is a starting point of corruption. Thus,
the correction process reads tags in the order of tag word 5, 4, 3, 2 until it does
not detect a corrupted word any more.



Fast Correction of Multiple Soft Errors in Highly Associative Cache 429

Detection and Correction Process. When an alpha particle affects M ad-
jacent words, we fix tag words one by one from the higher to the lower address
word in a pipelined fashion as you can see from Fig. 3. The definition for PAR,
ENC, RD, WR+MRA, and PROP used in Fig. 3 are described in Table 1. Since
we do not know, how many tag words are affected by an alpha particle, we read
them one by one starting from the lower address tag word until we find a tag
with no error. By pipelining correction process and optimizing circuits for fast
detection, we can significantly reduce the latency for correcting errors in multiple
adjacent tags.

2.4 False Cache Miss Handling

Typical handling of a cache miss in state-of-the-art non-blocking write-back
cache proceeds as follows. First, a cache miss is registered into MSHR if no
previous miss on the same cache line is found in MSHR. Second, a block to be
replaced is picked and its contents are written back if the line is dirty. Third, a
missed block fetch is initiated. Finally, when the block is fetched from the lower
level memory, it is written into the cache and its MSHR entry is invalidated.

This procedure is modified to handle a false miss. The major modification
includes following steps. First, when a soft error is detected, its corresponding
tag is read and corrected. This corrected tag is searched in the MSHR. If it is
found, it indicates that a false miss happened early and thus invalidates the valid
bit of the corresponding entry in the MSHR. When the missed block is fetched
from the lower level memory and it is not found in MSHR (which means its
valid bit is invalidated), the fetched block is abandoned. To make this procedure
work, we need an upper bound on the correction time, which is shown in Fig. 3.
That is, if the correction is not completed before the false miss fetches a block,
an entry in MSHR is not invalidated and the fetched block is treated as a fetch
for a true miss. This can corrupt the cache block and lead to a system failure.
Thus, the equation (1) should hold.

Correction T ime < Cache Miss Penalty (1)

This equation implies that given a cache miss penalty, there is an upper bound on
how many tag words can be corrected. Thus, the optimization of the correction
time is crucial. This will be discussed in next section.

3 Results

3.1 Simulations

To verify the functional correctness of our scheme, a cache simulator based on
SimpleScalar [9] was implemented. In addition, SPICE simulations are done to
measure the error detection time. The time includes the delay through the parity
chain, pre-coder, and address encoder. Transistor and interconnect models for
SPICE simulations are acquired from [5]. One key point to bear in mind is that



430 H.-J. Lee et al.

 (
V

)

−0.5

0.0

0.5

1.0

1.5

 v(bit)(V)

0.2 0.25 0.3 0.35 0.4 0.45 0.5

(V) : v(bit)(V)

v(error)

v(error_in)

r=2.5

r=0.076

(a) (b)

Fig. 4. (a) Performance of the multi-bit correction scheme: error detection delay (left
Y axis) vs the number of corrected tag words (right Y axis) with respect to the skew
ratio of the error detection NAND gate (X axis). (b) Noise margin with varying NAND
gate skew ratio.

the error detection delay does not affect the performance of cache operations
since detection and correction is done as a back-ground process. However, we
optimize the delay so that the total time for correcting M words is less than the
L1 cache miss penalty of a modern processor. We perform numerous simulations
using a 45 nm CMOS process technology. Fig. 4(a) shows the sum of PAR and
ENC delay for the multi-bit correction scheme in Fig. 2(a). This delay includes
the delay through the error parity chain and error address encoding. A horizontal
axis indicates the PMOS-to-NMOS skew ratio of an error detection NAND gate
shown in Fig 2(a). As the skew ratio increases, the detection speed becomes
faster but noise margin is decreased. If the detection speed gets faster, it is
likely to finish correcting more tag words before a false miss fetch returns from
the lower level memory. In this simulation, we get processor data from [6] and
assume that a processor core is running at 2.933 GHz and the L2 cache miss
penalty is 3.4 nsec. Based on this information, we calculate how many tag words
can be corrected as the detection speed gets faster due to skewing a NAND gate.
The line labeled as corrected tag words indicates the number of corrected tags
given speed of detection, which increases from 3 to 5 as the skew ratio increases.
The noise margin with respect to varying NAND gate skew ratios is shown in
Fig. 4(b). The simulation result shows that it decreases from 0.23 volts to 0.12
volts as the skew ratio increases. Thus, there is a trade-off between noise margin
and number of corrections.

3.2 Cost of Proposed Scheme

Additional area penalties are introduced by mainly three factors: new CAM cell
design including the parity circuit, additional parity bits, and an error address
encoder. We use CACTI [7] and magic [8] to estimate the cache area of dif-



Fast Correction of Multiple Soft Errors in Highly Associative Cache 431

ferent configurations. The cache area includes both tag and data memory. For
comparison, we choose a 32-way set-associative 32-KByte cache with a 32-byte
line size and a 24-bit tag, which is a typical 1st-level on-chip cache [2]. Whereas
the area for a baseline cache with no correction takes 1.9235 mm2, the area for
the multi-bit correction scheme (MBC) takes 2.0036 mm2. Compared with the
baseline, the cache area is increased only by 4.16 % in MBC. This is because
a tag memory takes up a relatively small portion of total cache size compared
with a data memory. For that reason, the area penalty in our scheme is small.

4 Conclusion

Our proposed scheme can be used effectively to detect and correct multiple
soft errors in the tag portion of CAM-RAM cache. It detects and corrects false
misses immediately and prevents fatal system errors and performance degrada-
tion whereas it requires a very small additional area.

Acknowledgments. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MEST) (No.2011-
0023798, No. 2010-0025423, and 2010-0026822) and by the Sogang University
Research Grant of 2011 (No.201110026).

References

1. Mukherjee, S., Emer, J., Fossum, T., Reinhardt, S.: Cache Scrubbing in Micropro-
cessors: Myth or Necessity. In: Proc. IEEE Pacific Rim International Symposium
on Dependable Computing, Papeete, Tahiti, pp. 37–42 (March 2004)

2. Hung, L., Goshima, M., Sakai, S.: Mitigating Soft Errors in Highly Associative Cache
with CAM-based Tag. In: Proc. International Conference on Comupter Design, San
Jose, California, USA, pp. 342–347 (Octorber 2005)

3. Lee, H.-J.: Immediate soft error detection using pass gate logic in content address-
able memory. IEE Electronics Letters 44, 269–270 (2008)

4. Farkas, K.I., Jouppi, N.P.: Complexity/Performance Tradeoffs with Non-Blocking
Loads. In: International Symposium on Computer Architecture, Los Alamitos, CA,
USA, pp. 211–222 (1994)

5. http://www.eas.asu.edu/~ptm/ (accessed December 2009)
6. Molka, D., Hackenberg, D., Schone, R., Muller, M.: Memory Performance and Cache

Coherency Effects on an Intel Nehalem Multiprocessor System. In: International
Conference on Parallel Architectures and Compilation Techniques, Raleigh, NC,
USA, pp. 261–270 (2009)

7. Thoziyoor, S., Muralimanohar, N., Ahn, J.-H., Jouppi, N.: CACTI 5.1, technical
report, HP Laboratories (April 2, 2008),
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html

8. http://opencircuitdesign.com/magic/ (accessed January 2011)
9. http://www.simplescalar.com/ (accessed February 2011)

http://www.eas.asu.edu/~ptm/
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
http://opencircuitdesign.com/magic/
http://www.simplescalar.com/

	Fast Correction of Multiple Soft Errors inHighly Associative Cache with CAM-Based Tag
	Introduction
	Proposed Architecture
	Overall Architecture
	Detecting and Correcting Multiple Soft Errors in a Single Interleaved Tag Word
	Detecting and Correcting Multiple Soft Errors in Adjacent Tag Words
	False Cache Miss Handling

	Results
	Simulations
	Cost of Proposed Scheme

	Conclusion
	References




